SOLVENT DEPENDENCE OF SINGLET OXYGEN / SUBSTRATE INTERACTIONS IN ENE-REACTIONS, (4+2)- AND (2+2)-CYCLOADDITION REACTIONS

Klaus Gollnick* and Axel Griesbeck

Institut für Organische Chemie der Universität, Karlstrasse 23, D-8000 München 2, Germany

Summary: Product formation of singlet oxygen reactions with simple olefins occurring as ene-reactions, (4+2)- and (2+2)-cycloaddition reactions is independent on solvent polarity. Thus, 2,3-dimethyl-2-butene (1) and 2-methyl-2-butene (3), 1,3-cyclohexadiene (6), and benzvalene (8) yield allylic hydroperoxides (2) and(4) (54%) + (5) (46%), endoperoxide (7), and dioxetane (9), respectively. The rates of the ene-reactions and (4+2)-cycloaddition reactions are only slightly dependent, those of the (2+2)-cycloaddition reaction, however, are clearly dependent on solvent polarity. "Physical" quenching of singlet oxygen by the olefins is negligible, but substantial by the sensitizer tetraphenylporphin (TPP) in chlorinated solvents.

For a study on the solvent dependence of products and rates of the three types of singlet oxygen/olefin interactions¹, we have chosen substrates <u>1</u>, <u>3</u>, <u>6</u>, and benzvalene (<u>8</u>)². The latter was shown to yield dialdehyde <u>10</u> upon irradiation in ether in the presence of 0_2 and of tetraphenylporphin (TPP) as a sensitizer, presumably via dioxetane <u>9</u> as the primary (unstable) product³.

First, we wish to report the isolation of dioxetane 9 from benzvalene (8). 8 irradiated⁷ at 13°C in oxygen-saturated acetonitrile or methylene chloride in the presence of rose bengale (RB) or TPP, respectively, consumes one mole of oxygen per molecule of 8. The ¹H-nmrspectra (80 MHz, TMS as internal standard) taken of these solutions at 13° C and those taken at -70°C in CDCl₃/CFCl₃ (3:1) after MeCN and CH_2Cl_2 were removed at -60°C/10⁻⁵ Torr are identical and in accord with structure 9 (benzvalenedioxetane = 7,8-dioxa-tetracyclo $[4.2.0.0^{2,4}.0^{3,5}]$ octane): $\delta = 2.24$ (m, 2H); 2.79 (m, 2H); 5.23 (s, 2H). 9 was isolated by removing the solvent at -25° C/10⁻⁵ Torr followed by distillation of the residue into a trap cooled to -78° C. If the distillate was warmed up to -20° C/760 Torr, it decomposed violently; no elemental analysis and molecular weight determination could thus be made. If the distillate was diluted with $CDCl_3/CFCl_3(3:1)$, the sensitizer-free solution of <u>9</u> yielded the same nmrsignals as those containing RB and TPP. Only 9 was observed if the nmr-spectra were taken immediately after 8 was photooxygenated at 13°C in the other solvents of Table 1. Thus, 9 appears to be rather stable at room temperature in polar and non-polar solvents. However, a slow rearrangement to the dialdehyde 10 (¹H-nmr: δ = 2.43 (t, 2H); 3.20 (dt, 2H); 9.47 (d, 2H)) occurred in all these solvents.

Second, in accord with our earlier report⁸, there is only formation of $\underline{2}$ from $\underline{1}$, of $\underline{7}$ from <u>6</u>, and of <u>4</u> (54⁺1 %) + <u>5</u> (46[±]1 %) from <u>3</u> in all solvents used, as was shown by ¹H-nmr-spectra and, in case of <u>4</u> + <u>5</u>, by vpc-determination of the corresponding alcohol mixture after reduction.

Third, we wish to report on the solvent dependence of B-values and absolute rate constants, k_r , of 10_2 -reactions with substrates 1, 3, 6, and 8.

In order to determine B-values defined as $B = k_d/k_r$ (M), we use 2,5-dimethylfuran (DMF) as a standard which allows to determine the value of $I_A \cdot Q({}^{1}O_2)$ for a given sensitizer/solvent combination. In all the solvents used, DMF absorbs one mole of O_2 during photooxygenation with a rate that is independent of the DMF-concentration since $k_r^{DMF}[DMF]/(k_r^{DMF}[DMF] + k_d) = 1$ as long as $[DMF] = 5 \cdot 10^{-4}$ M (in MeOH) and $[DMF] \ge 5 \cdot 10^{-6}$ M (in CCl₄). Furthermore, in all the solvents, the primary product is the endoperoxide of DMF; its subsequent thermal reactions do not interfere with the singlet oxygen reaction⁹. Finally, there is evidence that in all solvents $k_n^{DMF} \ll k_r^{DMF}$ and $k_n^S \ll k_r^{DMF}$ (for sens = RB and TPP)¹⁰.

None of the substrates used appear to quench the triplet states of RB and TPP¹⁰. We may therefore consider only the reaction steps which follow the formation of 10_2 :

1. ${}^{1}0_{2} \longrightarrow {}^{3}0_{2}$, $k_{d} = 1/\tau_{so}$; 2. ${}^{1}0_{2} + A \longrightarrow A0_{2}$, k_{r} ; product formation; 4. ${}^{1}0_{2} + sens \longrightarrow {}^{3}0_{2} + sens$, k_{q}^{S} ; and sens with τ_{so} = lifetime of ${}^{1}0_{2}$, A = substrate, and sens = RB and TPP. The rate of oxygen consumption is then given by equ. 1 :

for Non-polar and Polar Solvents					
Solvent	$10^{-4} k_{d}^{a}$	10 ³ ß(<u>1</u>) (M)	10 ³ ß(<u>3</u>) (M)	10 ³ ß(<u>6</u>) (M)	10 ³ B(<u>8</u>) (M)
cc1 ^{b,c}	0.14	0.10	1.51	0.44	59.07
C ₆ H ₆ b,d	4.20	1.32	34.63	14.84	074.12
снсі _з ь,е	1.70	0.36	7.22	4.30	20.22
сн ₂ с12 ^{b,}	^f 0.95	0.40	5.80	3.21	4.87
Me ₂ CO ^{g,C}	^d 3.80	1.17	19.92	12.75	7.23
MeOH ^{g,d}	14.30	4.00	95.93	37.49	18.84
MeCN ^{g,d}	3.30	0.76	11.00	9.38	3.96
a see ref. 12; b sens = TPP; c $k_q^S = 2.9 \cdot 10^7$					
$M^{-1} s^{-1}; d k_{d}/k_{r} \gg k_{q}^{S}[sens]/k_{r}; e k_{q}^{S} = 3.0$					
$\frac{10^7 \text{ M}^{-1} \text{ s}^{-1}; \text{ f } \text{ k}_q^{\text{S}} = 1.8 \cdot 10^7 \text{ M}^{-1} \text{ s}^{-1}; \text{g sens} = \text{RB}}{10^7 \text{ M}^{-1} \text{ s}^{-1}}$					

Table 1 : B-Values of Olefins 1, 3, 6 and 8

$$v_{0_2} = I_A \cdot \phi({}^{1}0_2) \cdot k_r[A] / \left[(k_r + k_q^A)[A] + k_d + k_q^S [sens] \right]$$
 (equ. 1)

with I_A = number of light quanta absorbed per unit time and volume, and $\Phi({}^{1}O_2)$ = quantum yield of singlet oxygen formation. Since $v_{0_2}^{DMF} = I_A \cdot \Phi({}^{1}O_2)$, we get

$$v_{0_2}^{\text{DMF}}/v_{0_2} = (1 + k_q^A/k_r) + (k_d/k_r + k_q^S[\text{sens}]/k_r) \cdot [A]^{-1}$$
 (equ. 2)

which shows that plotting $v_{0_2}^{\text{DMF}}/v_{0_2}$ vs. [A]⁻¹ allows to determine (a) the "physical" quenching of ${}^{1}O_2$ by the substrate A from the intercept of the curve with the ordinate, and (b) the slope containing B and the "physical" quenching of ${}^{1}O_2$ by the sensitizer 10,11 . If the slope is independent of the sensitizer concentration, B is derived directly from the slope. If it depends on [sens], a plot of the slope of equ. 2 vs. [sens] allows to determine a B-value extrapolated to zero sensitizer concentration and k_{α}^{S} from the slope of equ. 3 :

slope of equ. 2 =
$$k_d/k_r + (k_q^S/k_r) \cdot [sens]$$
 (equ. 3)

B-values thus derived are shown in Table 1, from which k_r -values were obtained by using singlet oxygen lifetimes determined by Merkel and Kearns¹². "Physical" quenching of ¹⁰₂ by <u>1</u>, <u>3</u>, <u>6</u> and <u>8</u> appears to be negligible since (1 + k_q^A/k_r) of equ.2 was always found to be 1 ± 0.15. There is, however, quenching of ¹⁰₂ by TPP in chlorinated solvents (see k_a^S -values, Table 1). A plot of log k_r vs. solvent polarity given as $(\epsilon - 1)/(2\epsilon + 1)$ (Figure 1) shows that (a) the (4+2)-cycloaddition reaction is nearly independent, (b) the ene-reaction is slightly dependent, whereas (c) the (2+2)-cycloaddition reaction is clearly dependent on the solvent polarity. Applying the Kirkwood-Laidler-Eyring model^{8,13} with $\mu(^{1}O_{2}) = 0$ D, $\mu(\underline{1}) = 0$ D, $\mu(\underline{3}) = 0.92$ D⁸, $\mu(\underline{6}) = 0.38$ D¹⁴, and $\mu(\underline{8}) = 0.88$ D¹⁵ allows to calculate the dipole moments of the transition states of the ene-reactions (= 2.1 D¹⁶), of the (4+2)-cycloaddition reaction (= 1.0 D), and of the (2+2)-cycloaddition reactions and (4+2)-cycloaddition reactions, but clearly present at the transition states of (2+2)-cycloaddition reactions. Whereas the first two reactions are best described as occurring in concerted mechanisms^{4,5} possibly via perepoxide-like transition states^{8,17}, the latter reaction appears to proceed via intermediates such as perepoxides or zwitterions⁶.

Acknowledgment: We gratefully acknowledge support by Fonds der Chemischen Industrie, Frankfurt.

References and Footnotes

- "Singlet Oxygen", H.H.Wasserman, R.W.Murray, Eds., Vol. 40, Organic Chemistry, Academic Press, New York, 1979.
- 2. We thank Prof. G. Szeimies, München, for providing us with benzvalene.
- 3. H.Leininger, M.Christl, D.Wendisch, Chem. Ber. 116 (1983), 681.
- 4. K.Gollnick, H.J.Kuhn, Ch. 8, p. 287, in ref. 1.
- 5. K.Gollnick, G.O.Schenck, in "1,4-Cycloaddition Reactions; the Diels-Alder Reaction in Heterocyclic Syntheses", J.Hamer, Ed., Academic Press, New York, 1967, Ch.10, p. 255.
- 6. A.P.Schaap, K.A.Zaklika, Ch. 6, p. 174, in ref. 1.
- 7. Standard reaction conditions and 25 ml irradiation unit with automatic 0_2 -consumption recording system (see H.Paur, Dissertation, Univ. München, 1982). A 150 W Halogen-Bellaphot lamp (Osram) and a band filter (transparent between 480 and 570 nm) (Hoya) was used for electronic excitation of TPP (10^{-4} to 10^{-3} M) and RB (10^{-4} to 10^{-3} M). The initial concentrations of the olefins were always $4 \cdot 10^{-2}$ M.
- K.Gollnick, H.Hartmann, H.Paur, in "Oxygen and Oxy-Radicals in Chemistry and Biology", M.A.J.Rodgers, E.L.Powers, Eds., Academic Press, New York, 1981, p. 379.
- 9. K.Gollnick, A.Griesbeck, Angew.Chem. 95 (1983), 751; Ang.Chem.Int.Ed.Engl. 22 (1983), 726.
- 10. K.Gollnick, H.Paur, A.Griesbeck, manuscript in preparation.
- "Physical" quenching of singlet oxygen by chlorophyll was recently observed by C.Tanielian,
 L.Golder, Photochem. Photobiol. 34 (1981), 411.
- 12. P.B.Merkel, D.R.Kearns, J. Am. Chem. Soc. 94 (1972), 7244.
- 13. A.A.Frost, R.G.Pearson, "Kinetics and Mechanism", J.Wiley, New York, 1961.
- 14. A.L.McClellan, "Tables of Experimental Dipole Moments", W.H.Freeman, San Francisco, 1963.
- 15. R.D.Suenram, M.D.Harmony, J. Am. Chem. Soc. 94 (1972), 5915.
- 16. In ref. 8, B-values were determined by using polymer-bound RB (Sensitox). The insoluble sensitizer did not allow to determine B by extrapolation to zero sensitizer concentration thus leading to too small k_r -values (especially in CCl₄) and, consequently, to a too large dipole moment for the transition state of 5.6 D.
- 17. K.Yamaguchi, T.Fueno, I.Saito, T.Matsuura, K.N.Houk, Tetrahedron Lett. 1981, 749.

(Received in Germany 15 November 1983)